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Consistent Model Reduction of Experimental Modal Parameters
for Reduced-Order Control

K. E Alvin,*L. D. Peterson,’ and K. C. Park*
University of Colorado, Boulder, Colorado 80309

The problem of synthesizing reduced-order linear models of vibrating structures for the design of fixed-order
dynamic feedback control is investigated. The present technique builds on a recently developed procedure for
constructing an objective set of mass and stiffness matrices from measured modal parameters that are akin to
the Craig-Bampton synthesized matrices obtained from finite element models (FEMs). The constructed mass
and stiffness matrices are determined directly from the identification of experimental data, however, rather than
through correlation or reconciliation of a FEM. A model truncation criterion is then applied to the identified
minimum-order mass and stiffness model to satisfy certain observability/controllability requirements for the
reduced model. Numerical examples illustrate the effectiveness of the proposed technique for synthesizing reduced-
order controllers from system realizations of experimental data. The dynamic performance of the resulting closed-
loop models is assessed using the known full-order structural dynamics and compared with existing model reduction

techniques.

1. Introduction

T is well established that the stability and performance of model-

based controllers for large space structures (LSSs) is highly de-
pendent on the accuracy of the dynamic model used for control
design. Unfortunately, the accuracy of analytical models {e.g., fi-
nite element models (FEMs)] formulated from design drawings of
structures are necessarily limited by the governing assumptions of
linear behavior, the statistical variance in the properties of struc-
tural components due to fabrication tolerances, and the increased
heterogeneity of the structures being modeled. It is generally ac-
knowledged that even a high degree of modeling precision cannot
compensate for a lack of experience with the real measured behav-
ior of complex structures. For this reason, system identification of
experimental data has played an important role in the synthesis of
model-based dynamic compensation.

Unfortunately, whereas highly accurate minimal-order realiza-
tions of experimental data may be obtained for model-based con-
troller synthesis, the resulting model order may still be quite large.
Thus, the designer must frequently truncate either the system real-
ization or the controller dimension, compromising accuracy so that
the size of the resulting design is small enough for computationally
feasible real-time control. This is the well-known problem of model
reduction for control. Figure 1 illustrates the possible design proce-
dures for synthesizing reduced-order model (ROM) controllers for
systems possessing larger order dynamics.

The focus of this paper is on methods of reducing the identified
model of the system being controlled such that the resultant con-
troller design is feasible for real-time implementation. Typically,
identified models of experimental data are truncated by either elim-
inating the normal modes of the model that are less critical to per-
formance or isolated from the control bandwidth, or by eliminating
model states that are the least controilable or observable. If the
model states are the normal modal displacements and velocities,
this is termed a modal truncation and requires a measure of the
modal controllability and observability.! Otherwise, it is possible to
transform to an equivalent realization in which the controllability
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and observability grammians for the state definition are equal and
diagonal. This is referred to as a balanced realization, and truncation
of the least controllable/observable states is then termed a balanced
reduction.? In fact, the realization determined by the basic Eigen-
value Realization Algorithm (ERA) identification procedure® leads
to a balanced model, and the selection of the identified model order
for experimental data effectively leads to a balanced reduction of
the measured dynamics.

In FEM-based structural dynamics, a widely accepted proce-
dure for substructure model synthesis and reduction is the so-called
Craig-Bampton (CB) component mode synthesis method.* A CB
model is a reduction of the second-order mass and stiffness of the
FEM with respect to a selected set of physical (usually boundary)
degrees of freedom (DOF). The CB representation of mass and
stiffness is constructed for a larger order model through a full set of
constraint modes and a selected set of fixed-interface normal modes.
An important characteristic of the CB representation is that, due to
the inclusion of the constraint modes, the resultant model is stati-
cally complete with respect to the retained physical DOF. Here, a
statically complete model is one that retains all component modes
necessary to exactly capture the static, or zero-frequency, response
of the full-order system. For free-free systems, this implies that the
rigid-body modes are exactly preserved.

Inrecent years, a number of researchers have noted the advantages
of static completeness and the CB representation in model reduc-
tions for control. Blelloch and Carney® noted the advantages of static
completeness for preserving closed-loop poles and transfer func-

System Realization | Focus
Order: N of
this Study
Controller Design f i
Order: N | Model Reduction E
! Order: N_c <N i
Direct i E
Synthesis i '
; 1
1 H
i | Controller Design | |
Controller E Order N_c <N |
Reduction : E
! 1
[ S NS, H
ROM Controller
Order: N_c<N

Fig.1 Fixed-order controller design paths.



ALVIN, PETERSON, AND PARK 749

tions in a model reduction procedure. Craig and Hale® have shown
that a block-Krylov vector space spanned by the fixed-interface
modes is controllable (observable) when formed recursively from
the constraint modes. Recently, Triller and Kammer’ have directly
addressed controllability/observability measures for the CB fixed-
interface modes, their advantages over normal-mode measures, and
application to the problem of model reduction for controller design.

This paper presents a new physical model-based reduction tech-
nique for measured modal parameters in reduced-order control. To
this end, we demonstrate a minimal-order mass and stiffness rep-
resentation of the model® that is used in conjunction with physical
variable-based reduction methods as an alternative to modal trunca-
tion or balanced reduction. An important advantage of this approach
is that it does not require correlation of a large-order FEM of the
structure. Instead, the minimum-order stiffness and mass matrices
are directly constructed from the modal parameters and then treated
as if they were CB representations of mass and stiffness determined
from a FEM. Another advantage of the present technique is that we
can utilize the physically based model reduction of the CB model,
which preserves the full static completeness of the identified model.
In summary, the present technique directly synthesizes reduced-
order statically complete models from system identifications while
bypassing the complications of correlating larger order FEMs.

The remainer of the paper is organized as follows. In Sec. II, the
system realization process and methods for extracting modal pa-
rameters from system realizations are briefly reviewed. In Sec. III,
a recently developed procedure for representing modal data in a
mass-stiffness form similar to the CB synthesis technique for FEMs
is detailed. The resultant mass and stiffness matrices have an asymp-
totic equivalence to the Guyan-reduced and CB-synthesized matri-
ces as the full modal spectrum is identified. Section IV details the
reduction of the identified minimum-order mass and stiffness model
through truncation of the fixed-interface modal coordinates charac-
teristic of the CB representation. In Sec.V, the reduced model basis
is evaluated through numerical examples and compared to trunca-
tion of normal vibration modes and balanced model states. Finally,
conclusions are presented in Sec.VI.

II. System Identification and
Normal-Mode Parameters

In modern modal testing, the system identification typically
begins by obtaining frequency-domain transfer functions over the
bandwidth of interest for each input-output pairing through discrete
Fourier transforms and ensemble averaging. Modal parameters are
determined either by curve-fitting techniques or from an equiva-
lent system realization of the data in the time or frequency domain.
The ERA? and the Polyreference technique” are two such methods
that have become widely available and utilized for structural dy-
namic systems. The ERA is designed to systematically determine
a minimum-order discrete-time model to approximate the system
pulse response. The algorithm uses numerical techniques that are
robust in the presence of repeated roots and measurement noise.
The discrete-time model can be converted to a corresponding set of
continuous-time equations, viz.,

x(t) = Ax(t) + Bu(t)
y(&) = Cx(t) + Du(1)

Efficient implementations of the ERA and its relationship to other
system realization algorithms are detailed in Refs. 10 and 11. The
extraction of the damped modes and complex mode shapes from the
general system realization form (1) is briefly reviewed in Ref. 3.

InRef. 12, a general transformation-based algorithm has been de-
veloped that consistently extracts the modal parameters of second-
order dynamics from the general state-space equations (1). The
common basis-normalized structural identification (CBSI) proce-
dure obtains the correct normal (i.e., undamped) modal properties
when the system damping is exactly proportional and a particu-
lar approximation in the more general damping case by a similarity
transformation of the state-space model (1) to the normal-mode form
of the associated second-order equations of motion. Mass orthonor-
malization of the eigenvectors is determined through driving-point
measurements (i.e., collocated actuator and sensor).

@

III. Construction of Minimal-Order Mass
and Stiffness Matrices

One area of recent interest in structural identification has been the
determination of mass and stiffness matrices directly from systemre-
alizations of experimental data.'> Many such direct solutions suffer,
however, from the limitation that the number of identified modes and
the number of modal sensors be equal. The present minimal-order
mass and stiffness procedure bypasses this limitation by enriching
the physical model with the complete set of measured modes, inde-
pendent of the number of sensors. This allows the resulting model to
express contributions of all the modes observable from the available
sensors. We now review a method for constructing reduced-order
and minimal-order mass and stiffness matrices directly from mea-
sured normal modal parameters that have asymptotic equivalence
to existing FEM reduction and synthesis methods.

A. Component Mode Reduction of Finite Element Models

Component mode synthesis (CMS) techniques are generally ap-
plied to FEMs to both reduce the problem order and synthesize
subsystem models into global models through interface compatibil-
ity conditions. In the present discussion, we are interested only in
the use of component modes to accurately and efficiently reduce the
order of a single-system model.

In one of the most widely known and applied component mode
techniques, the so-called CB method,* the component modes uti-
lized are the full set of constraint modes augmented by a truncated set
of fixed-interface modes. The constraint modes and fixed-interface
modes are always defined with respect to a set of physical DOF
qm. The complement of g, is defined as g; such that the full set of
physical DOF q is given by

q={%} @)
qi

and the equations of motion are written as
MG+Dg+Kq=f ©)

where M, D, and K are the system mass, viscous damping, and
stiffness matrices, respectively, and f is a vector of external forces.
The eigenproblem corresponding to Eq. (3) is given as

Ko, = MP,Q

C))
DD = &

SIMD, =1 oIk, =Q

where ®, are the mass-normalized real mode shapes, 2 is the diago-

nal matrix of eigenvalues equivalent to the squares of the undamped

natural frequencies, and E is the modal viscous damping matrix.
If we partition Eq. (3) into a measured set g,, and unmeasured (or

internal) set g;, we have

Mmm Mmi Qm + Dmm Dmi qm
ME My | g DI Dyl 4

’Cmm ICmi dm _ fm
L i )-17]

The constraint modes are then defined as the static displacement
vectors of g corresponding to orthogonal unit displacements of g,,,.
Solving Eq. (5) with forces applied only to the measured DOF (i.e.,
fi = 0), we determine that

1
q(t) = [_’C;.Kii]qm(f) = g (1) ©

The importance of the constraint modes P, are that the static system
response can be exactly expressed solely in terms of these modes
for any applied force f,. Applying Eq. (6) to K, D, and M, the
so-called Guyan reduced stiffness, damping, and mass** are

K=®TKd, = Kpm — Kni K;;' KT,

. (N
D = oTDd,

M= T Mo,
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The resultant model no longer possesses the large-order dynamics
of K and M but preserves the general behavior of the larger eigen-
problem for the lowest frequency modes and modes that are strongly
influenced by the retained degrees of freedom.

The Craig-Bampton CMS method can be viewed as an extension
or augmentation of the statically condensed mass and stiffness of
the Guyan reduction. Recalling Eq. (6), in the CB method ¢ is
represented as

_I 0 qm___ qm
q‘[—@%% EHS}”T{s} ®

where & are the augmented generalized DOF and 7; are the dis-
placements of g; with respect to unit displacements of £. Applying
this to X gives

i‘C:T%T:[’C TO ] ©)
0 TE’CiiTE

Thus, K is block diagonal, composed of the Guyan reduced stiff-
ness matrix and a residual symmetric stiffness matrix. Note that we
have not yet defined £ as fixed-interface modal coordinates of set
i; the form of XC is a consequence of Eq. (8), which defines £ as
a subspace orthogonal to g, through . To uniquely define £, it is
specified that 7 are the mass-orthonormalized eigenvectors of the
generalized eigenproblem

’Cii Tg = M”T§QE

10
TETIC,','Tg = QE TsTM,','Tg =1 ( )

Using Eq. (10) to fully define T, the CB stiffness and mass matrices

are given by
. K o
f=T17KT = [ }

0
MM b
U =TT MT = ¢
MM [MZ 1]
where
Mo = My Ty = KiK' M Ty (12)

is a mass coupling between ¢,, and £ and M is the Guyan-reduced
mass given by Eq. (7).

B. Minimal-Order Experimental Mass and Stiffness

Alternative representations of the Guyan reduction and CB mod-
els can be found in terms of the normal modes of the full-order
system. We begin by assuming that the measured modes from test
completely span the dynamics such that the model representation
in modal coordinates is a completely equivalent realization. Com-
paring partitions of the global flexibility matrix (i.e., inverse of the
stiffness matrix) with respect to the test-measured DOF, the Guyan-
reduced stiffness matrix is found as

£ =[sm2'0l]" a3)

where ¢, if the partition of the mass-normalized mode shapes ¥,
with respect to the physical g,, dispacement DOF and €2 is the diag-
onal matrix of the squares of the undamped natural frequencies of
the corresponding modes. Similarly, we can find the Guyan-reduced
mass and damping matrices as

VI e
_M=LoaTek (14)

D=K¢,Q 'EQIgIK
The reduced system matrices given by Egs. (13) and (14) are the-
oretically consistent with the Guyan reduction in the limit as the
full eigenspectrum of Eq. (5) is measured. In addition, they are a
function only of the partition of the mode shapes at the measured

locations and thus can be directly calculated from the measured
test data.

For incorporation of purely rigid-body modes, the correct reduced
stiffness and mass matrices are given by

K= I-Cf - ’—Cf¢Mr (¢£,k:f¢mr)—l¢£,fcf

(15)
_ _ _ — - - 2 —

M=K, Q7200 K+ K (85 Ksém,) 65 Ks
where ¢, and ¢, are the partitions of the mass-normalized mode
shapes into rigid-body and flexible modes, 2 is the nonzero parti-
tion of & corresponding to the flexible modes, and

Kr=[tn 2505 ]

The mass matrix M as calculated from Eq. (15) is not only posi-
tive definite whereas KC is positive semidefinite but in fact correctly
preserves the mass orthonormalization of the mode shapes ¢, .

The determination of a minimum-order equivalent mass and stiff-
ness from test is based on the mass and stiffness form of the Craig—-
Bampton CMS method. Starting from X, we can construct the
minimal-order stiffness KC by augmenting the measured mode shapes
¢, by a vector basis for the residual dynamic DOF £. We define the
dynamic residual matrix as

AQ=Q—¢lK¢n = Q2= % ($u2'07) '#n  (16)

The required minimal rank augmentation of ¢, is determined
through a singular-value decomposition of the dynamic residual
matrix A2, viz.,

PSPT = svd(AQ)

Examination of the singular values indicates the dimension of the
augmented coordinates £,

AQ=PSP" = P,S,P] an

Having determined a basis P, for the augmented coordinates, we
now augment ¢,, by the rows of P that span the singular values
and solve the inverse problem:

£ o P R I
[o fcm]=[1>;] Q[P:]

e wel- 0] ]

Finally, the augmented DOF are orthonormalized for consistency
with the definition of £ in Eq. (9) by solving the generalized
eigenproblem:

18)

’Cres U= Mres U QE

19
UT KU = €2 UT MU =1 (19

and performing a final transformation on the mass and stiffhess

matrices:
. K 0 K
P _ K 0
0 UTK.U 0

K= M MU T M M
CLutMT UTMGU ] MT T

The primary experimental design requirement for determining
the equivalent minimal-order mass and stiffness matrices is mea-
surement of a collocated sensor at the driving point of the structure.
This sensor allows for the experimental mode shapes to be mass
normalized on the basis of the force input and structural response
data. Further details of this method are given in Ref. 8. In the next
section, we utilize the minimal-order mass and stiffness represen-
tation of the measured modal parameters to facilitate a structural
model reduction for active control.

(20)
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IV. Reduction of Minimal-Order Mass
and Stiffness Models

We now examine the use of minimum-order mass and stiffness
models for the design of fixed-order controllers. As reviewed in
Sec. III, this model form is not only similar to a CB representation
of an equivalent FEM of the system, but is in fact asymptotically
equivalent to the CB model in the limit as the full modal spectrum
of the CB model is identified. That is, given all the modes of a
CB model of a structure and the corresponding mode shapes at the
physical boundary DOF retained in the CB representation, the CB
mass and stiffness matrices can be reconstructed exactly for the
contributions of the constraint modes and all fixed interface modes
that are controllable/observable from the boundary DOF.

Therefore, we can apply existing controllability and observability
measures for the CB representation to our minimum-order measured
mass and stiffness models. We now review Triller and Kammer’s
recent work,” which established an equivalence between the mass
coupling matrix M, and fixed-interface mode controllability.

A. Effective Interface Mass and Controllability

Let us write the undamped equations of motion for Eq. (2) in terms
of the CB (or equivalently the measured minimum-order) mass and
stiffness matrices, viz.,

. + = u 21

[M? 1 ]{s} [0 9]{5} [0 @b
where it is assumed that the retained physical DOF g, are exactly
those DOF at which the control forces u are applied. The equations

of motion for the fixed interface (or equivalently residual) modal
variables &, are then given as

ér + 2§ = _qum (22)

Therefore, —M?7 is effectively a modal participation factor matrix
for the accelerations 4, that excite the fixed-interface modes. From
this concept, a measure termed the effective interface mass can be
defined for each fixed-interface modal coordinate &,;, viz.,

o T MG o3
; AT )
where n, is the dimension of the vector g,,.

Ignoring eigenvalue multiplicity considerations and relative
weightings of the DOF in g,,, a relative measure of controllability of
fixed-interface coordinate &,; with respect to input accelerations at
the interface DOF g, is directly given by its effective interface mass
measure X;. Using this same measure as the relative controllabil-
ity with respect to the input forcing function u ignores the relative
stiffness and mass properties that couple the ¢,, DOF but does give
an efficient approximate ordering of the fixed-interface modes.

B. Procedure for Model Reduction

The procedure for reducing the minimum-order mass and stiffness
model is straightforward. First, we retain the DOF corresponding
to the actuators and also possibly some or all noncollocated sensor
DOF. The model reduction then amounts to selection of the residual
modal coordinates &,;, whose controllability can be ranked through
the effective interface mass measure X;. That is, if the total controller
orderisto belimited to N¢ and the order of the second-order physical
(i.e., mass and stiffness) variables g, is n,, then the number of
retained residual modal coordinates &,; is equal to

n, = iNc —n, 4)

Generally, the n, coordinates &,; with the largest effective interface
mass ¥; will be retained.

In addition, further reduction in the order of the state estimator
is possible because, by retaining the physical measurement DOF, it
is not necessary to estimate the variables that are effectively direct
measurements. If n, measurement DOF from the variables g,, are

treated in this fashion and thus not estimated, the number of retained
coordinates £,; is increased to

nr:%NC_nu'i‘nz (25)

There may still be reason to include the direct measurement DOF
in the ROM estimator, for example, to filter the measurement sig-
nal noise. In the example problems to follow, we will include the
DOF g, in the estimator states for conservatism and for consistency
in performance comparisons with other ROM controllers based on
normal modal truncation and internal balanced reduction.

We summarize the reduction of system realizations based on
minimum-order mass and stiffness as follows:

Step I: Identify experimental data in the general state-space form
(1) using the ERA or equivalent methods.

Step 2: Transform Eq. (1) using CBSI or other methods to extract
the identified mass-normalized modal parameters ¢,,, €2, and E.

Step 3: Apply the minimum-order mass and stiffness method de-
tailed in Sec. II to compute the reduced stiffness K and minimum-
order mass and stiffness M and K. The same transformations can
be applied to the modal damping matrix E to compute an equivalent
physical damping matrix D that is consistent with M and K.

Step 4. Compute the effective interface mass measures Z; for
the residual dynamics using the M, partition of M. Truncate the
residual partitions of X and M with the smallest ¥; until the desired
controller order is attained. The resultant ROM is of a second-order
mass-damping-stiffness form, which is easily recast in state-space
form for use in modern control design algorithms.

V. Implementation and Evaluation

A numerical example of a planar truss structure was formulated
for performance evaluation of the proposed model reduction tech-
nique. Figure 2 illustrates the structural layout highlighting the phys-
ical locations of the inputs and outputs. The bold arrows symbolize
the force inputs with collocated velocity outputs. In addition there
are three additional velocity outputs that are noncollocated for a to-
tal of six possible measurements and three applied feedback control
forces. The model was formulated using only truss elements and
translational DOF for a total of 36 physical DOF.

A. Determination of Minimal-Order Mass and Stiffness

We begin with the system identification of simulated experimen-
tal data. In order to model both the effects of measurement noise
and some degree of nonlinearity or nonrepeatability in the structural
response, a normal distribution of 5% rms noise was added to the
simulated impulse responses. The system damping was assumed to
be proportional, with 0.1% modal damping ratios for the 36 struc-
tural modes. The impulse response for the 18 transfer functions was
identified using a form of the ERA method, as implemented in Ref.
10. CBSI was then used to extract the normal modal parameters, and
the minimum-order mass and stiffness subsequently obtained. The
reduced stiffness was computed for a range of system realization
model orders and the convergence of the norm of the six reduced
stiffness matrices was studied to verify the required realization ac-
curacy. This convergence is shown in Fig. 3. From this, the identified
state-space realization was estimated at 70 or equivalently 35 modes.
Figures 4 and 5 illustrate the resultant minimum-order stiffness and
mass matrices, respectively, in which the residual modes have been
ordered by the residual frequency magnitude. Observe that the mag-
nitude of the elements of the off-diagonal mass coupling submatrix
M, in Fig. 5 is largest for the lowest residual modal coordinates.

B. Controllability, Static Completeness, and Reduction

As outlined in Sec. IV, the effective interface mass measure can be
quickly computed from the mass coupling matrix M, for each of the
residual modal coordinates. To compare and contrast the minimum-
order mass and stiffness (MOMS) reduction method to existing
techniques, we have selected reduction based on normal-mode
truncation and reduction via balanced-state truncation® as two
alternative candidate techniques. A balanced-state model is one for
which each of the internal states are equally controllable and ob-
servable, and the controllability and observability grammians are
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Fig. 2 Thirty-six DOF planar truss example problem.
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Fig. 3 Convergence of reduced stiffness matrix.

Fig.4 Identified minimum-order stiffness matrix.

diagonal. For normal-mode truncation, we have selected two can-
didate controllability measures for evaluation.

Modal Truncation: Modal Singular Value (MT-MSV)

Here we order the identified normal modes by a measure of their
contribution to the discrete measured responses used in the system
identification. The measure chosen is the modal singular value,'
which is roughly analogous to the product of the discrete-time con-
trollability and observability.

Modal Truncation: Mode Shape Magnitude (MT-MSM)

A gross comparative measure of controllability can be obtained
from the mass-normalized mode shapes by computing the norm of
the partition of each mode shape at the control input locations. That
is, letting ¢7 be the normal modal participation factors of the input u,

wi = PiB ©6)

Fig. 5 Identified minimum-order mass matrix.

the relative controllability of normal mode i could be given by
Y = buibui @7

This measure is not entirely appropriate, however, in that it favors
modes with higher acceleration response rather than zero-frequency
displacement gain. Therefore, we replace Eq. (27) with

_ ,‘2¢ui
- 2

wni

(28

which favors modes contributing more significantly to the static
behavior of the system.

For this numerical example, two orders of model reduction were
studied; N¢ = 24 and N¢ = 12, given that the maximum model
order identified from the system realization was N = 70. The
reduced-order model states were selected independent of the se-
lected measurements since the MOMS and MT-MSM reductions
are based solely on controllability measures. For the balanced and
MT-MSYV reductions, which are also dependent on observability,
the full set of six possible measurements were utilized.

In Table 1, the ordered modal controllability measures, normal-
ized to a maximum of 1.00, are presented for the residual modes
of the MOMS method, and for the two normal modal truncation
criteria, up to N¢ = 30. The balanced reduction is not included
here because it is not based upon modal controllability measures.
In Table 2, a measure of the error in static completeness of each
model is given. This error measure is computed as the percentage
difference in the norm of the system receptance, viz.,

lir%Hd(w) = lin}) Cyliwl — A)Y"'B=—-C,A"'B (29)

Note that the MOMS model is indeed equivalent to the full-order
identified model in terms of its static behavior. The small error
present is a result of the system identification of the data with 5%
rms noise, which results in a small variance between the identified
model and the exact dynamics. Note also that the static completeness
errors of the balanced reduction and modal truncation ordering are
also fairly small, though not as good as the MOMS model.
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Table 1 Modal controllability measures

Second-order MOMS MT-MSV MT-MSM

ROM Residual Normalized Normal Normalized Normal Normalized

DOF mode measure mode measure mode measure

1 N/A N/A 1 1.0000 1 1.0000

2 N/A N/A 2 0.8514 2 0.1512

3 N/A N/A 3 0.5379 3 0.0774

4 1 1.0000 7 0.5116 14 0.0372

5 4 0.7410 4 0.4607 7 0.0183

6 3 0.4497 18 0.4423 6 0.0146

7 2 0.4384 12 0.3501 5 0.0071

8 6 0.3269 11 0.3437 12 0.0068

9 7 0.1080 5 0.3301 13 0.0062

10 8 0.0441 16 0.3280 11 0.0060

11 10 0.0367 26 0.3257 18 0.0053

12 14 0.0321 20 0.3246 9 0.0049

13 12 0.0305 8 0.3086 16 0.0046

14 9 0.0253 13 0.2959 20 0.0043

15 18 0.0206 17 0.2863 10 0.0042

Table 2 Error in ROM static

completeness

Model N, Percent error
Full order 70 0.0499
MOMS 24 0.0499

12 0.0499
MT-MSV 24 1.8439

12 2.7921
Balanced 24 2.2376
Reduction 12 42887
MT-MSM 24 1.6722

12 3.0317

C. Linear Quadratic Regulator/Gaussian Design
and Evaluation Procedure

To objectively compare and contrast the performance of each
ROM controller, a systematic optimal linear quadratic regula-
tor/Gaussian (LQR/LQG) compensation design procedure was fol-
lowed. The exact full-order system is given as

x=Ax+ Bu-+ Hw

30
z=Mx+v (30)

y=Cx

where w are system force disturbances, z are the feedback mea-
surements, v is the measurement noise, H is the disturbance state
influence array, and M is the state measurement influence array.
The noise characteristics are assumed to be white with Gaussian
distribution. The identified reduced-order model is then given as

XR = ARxR =+ BRu + HR‘LU

31
Z=MR)CR+U ( )

¥ = Crxp
Utilizing the separation principle,' the regulator gain G and the
estimator gain K may be separately determined. For the regulator,

a full-state feedback law u = Gxy was obtained by minimizing the
performance index

o0 1 pz
J = ~yT “uTRulds
/0 <2y Oy + T u>

0 =0250x I

(32)

where
R=0010x1T (33)

and p is a parameter to be varied so that the controller performance
may be examined over a range of possible designs. For the estimator,

a standard LQG design was obtained using disturbances w at the
control actuator locations and measurement noise v, viz.,

¥r = Ar¥r + B + K(z — Mg¥) (34)

The covariances of the disturbances and noise were assumed to be
Elw@®uwl (D]=Ws@t —1)=18(¢—1)
ElvinvT (0] =Vt —1)=0.010 x I 8(t — 1) 35

E[w(t)v" (1)] =0

The closed-loop system with full-order system dynamics and the
ROM-based controller design is then given as

Xc = Acxc + Bowe ye = Cexe (36)
where
A BG
Ac=
KM Ap+ BrG — KMy
B H 0 Co — C 0 37
““lo «k ““lo ¢ )

SRS E R

The covariance of the outputs y and controls u can be determined
from the covariance X¢ of the closed-loop state x¢. First, solve the
Lyapunov equation for X¢, viz.,

W o
AcXc +XcA€+Bc|:0 V]Bg =0 (38)

Then, the covariance Y of the output and U of the control are given
as

Y=[C O0]Xc[C 0]

39
U=[0 GlXc[0 G 39
Finally, to quantify the output magnitude and control effort in a
single parameter, we utilize the trace of the output and control co-
variances, Viz.,
o, = tr[Y]

o, = tr{U] (40)



754 ALVIN, PETERSON, AND PARK

80 T T T T

70+ N ————————— Full-Order 70 State E
Ry 000 me——e-- MOMS ROM 24 State
60| e MT-MSV ROM 24 State
NS e Balanced ROM 24 State

)
o\
o

T

s

G———0 MT-MSM ROM 24 State

Trace(E(y*y*T)
S
(=]

3¢t 1
20} 7
10r )

0 : , : . :
107 10° o' 10° 10° 10* 10°
Trace(E(u*u*T))
Fig. 6 Collocated feedback design: large-ROM resuits.
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D. Comparison of ROM Controller Performance

The controller design and evaluation procedure outlined in the
preceding section was implemented for a series of system designs
of the planar truss example. Each system design case consisted of
a selection of measurements for feedback control and a selected
reduced-order model size N¢. Figures 6 and 7 illustrate the relative
ROM controller performance using the three collocated sensors for
feedback. The performance is represented by plotting the trace of
the output covariance Y vs the trace of the control covariance U.
Relative better performance is indicated by the lower curves, since
this implies higher output suppression for an equivalent control ef-
fort. The performance results reflect a variation in the performance
design parameter p from approximately 107 up to 10°.

The “large ROM” was limited to 24 first-order states. This corre-
sponds to 12 vibration modes for the modal truncation ROMs and
9 residual (or fixed-interface) dynamic modes for the MOMS re-
duction method (plus the 3 physical measured DOF retained in the
ROM). The “small ROM” was then limited to 12 first-order states,
corresponding to 6 normal modes for the modal truncation ROMs
and 3 residual dynamic modes for the MOMS reduction method.

From Figs. 6 and 7 it appears that the MOMS ROM controller
does not outperform either the balanced reduction or the modal
truncation ROM controllers except at a high control effort. It
does, however, significantly outperform a modal truncation-based
ROM controller where the modes have been ordered by the mass-
normalized mode shape magnitude at the actuator locations as in
Eq. (27). This improved performance is consistent with results of
Ref. 7, which studied the relative ROM accuracy for CB model
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Fig. 8 Noncollocated feedback design: large-ROM results.
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Fig. 9 Noncollocated feedback design: small-ROM results.
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Fig. 10 Hybrid feedback design: large-ROM results.

representations vs mode shape magnitude-ordered modal trunca-
tion. For the present analysis, only modal truncation based on MSV
and Eq. (28) are included for quantitative performance comparisons.

Figures 8 and 9 illustrate the relative ROM controller performance
using the three noncollocated sensors for feedback. All the methods
employed in the noncollocated case used the same ROM states as
for the collocated case. This is because the MOMS ROM method,
utilizing only actuator DOF, does not account for the noncollocated
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Fig. 11 Hybrid feedback design: small-ROM results.

sensor observability in the computation of the effective interface
mass. As expected, this system design is much less robust as it
is more dependent on the accuracy of the model. There was little
appreciable difference in the stability margins of the different ROM
controllers.

Finally, Figs. 10 and 11 illustrate the relative ROM controller
performance using all six sensors (collocated and noncollocated)
for feedback. For these hybrid cases, the MOMS ROM controllers
did show a more pronounced improvement over the other ROM
controllers. It is not yet clear whether this improvement was a result
of the example problem being studied and the input and output
locations chosen or if in fact it is due to the static completeness
feature of the CB/MOMS representation.

V1. Conclusions

A new approach for reducing the order of identified structural dy-
namics models for active controls has been presented. The method
is based on a MOMS representation of the identified normal modes,
which is similar to the CB component mode synthesis representa-
tion of FEMs. The present procedure directly synthesizes the real-
ization of experimental data and thus does not require correlation
of a FEM. Model order reduction is accomplished through trunca-
tion of the residual dynamic modes of the MOMS model, which are
analogous to the fixed-interface modes of CB models. The relative
performance of LQR/LQG-based ROM controllers using the present
procedure and existing techniques based on normal-mode trunca-
tion and balanced reduction has been detailed through numerical
examples. The new reduction procedure is superior to modal trunca-
tion based on ordering the normal modes by their mass-normalized
mode shape magnitudes at the actuator locations but does not out-
perform balanced reduction or modal truncation based on MSV and
zero-frequency gain. Further work in this area should address the

synthesis of ROM-based controllers from experimental data using
the present procedure and implementation of those controllers for
real-time active control to experimentally measure their closed-loop
performance.
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